含有磁粉和污泥的污水从转鼓的一端进入分离装置,固定磁极将磁性颗粒吸出并附着在滚筒表面,随着滚筒的转动,被带至磁系边缘的低磁区,并从磁性物质出口卸下,非磁性物质则在重力的作用下,沿分离槽流至非磁性物质出口排出,完成磁性物质和非磁性物质的分离过程。
4 磁混凝沉淀技术的工艺流程及工艺参数
2007 年年底,10 000 t/d 的磁混凝沉淀试验装置在北京清河污水处理厂进行了为期2 个月的试验,取得了良好的效果。第2 年,运用该项技术的5 万t/d 的市政污水处理项目在该厂建成并投入运行。笔者将以该工程为例,介绍磁混凝沉淀技术的工艺流程及最佳工艺参数的确定。
4. 1 工艺流程
磁混凝沉淀工艺流程见图2。
图2 磁混凝沉淀工艺流程图
污水经格栅初步分离后,进入处理装置的1 级混合池,同时向1 级混合池投加混凝剂MMS-A,二者充分混合后进入2 级混合池,在此与回收的磁粉和回流污泥混合絮凝,然后进入3 级混合池,与在此加入的助凝剂MMS-M 进行反应,生成较大的絮体颗粒,最后进入沉淀池快速沉降,出水进入下一道处理工序。
经沉淀池沉淀下来的污泥,部分经污泥回流泵回流到2 级混合池继续参与反应,另一部分则经高剪切机进行污泥剥离,并进入磁鼓进行磁粉回收,回收的磁粉再次进入2 级混合池继续参与反应,剩余污泥则进入后续污泥处理系统。加药间调配好的MMS-A和MMS-M 溶液由加药泵输送至各加药点。MMS-A投加到1 级混合池。MMS-M 投加到3 级混合池。
4. 2 最佳工艺参数的确定
在污水处理中,COD、总磷、浊度是几项最常用的指标,下面我们通过对这几项指标的测定,分析磁混凝沉淀工艺的最佳运行参数。试验中,源水为清河污水处理厂总进水。现将基本工艺条件及参数列于表1。
表1 基本工艺条件及参数
工艺条件 | 进水COD(mg/L) | 进水总磷(mg/L) | 进水浊度/NTU |
参数值 | 380~520 | 4.5~6.5 | 250~450 |
工艺条件 | 混凝剂 | 助凝剂 | 磁粉 |
参数值 | MMS-A | MMS-M | Fe3o4 |
工艺条件 | 1级混合池 | 2级混合池 | 3级混合池 |
停留时间 | 停留时间 | 停留时间 | |
参数值 | 2min | 2min | 2min |
4. 2. 1加料顺序对系统运行的影响
保持其他工况不变分别试验以下3 种加料顺序对磁絮凝反应的影响。①先加MMS-A,再加入磁粉,然后加MMS-M;②同时加入磁粉和MMS-A,然后加MMS-M;③先加MMS-A,再加MMS-M,最后加磁粉。其中每种物料的投加间隔时间为2 min。针对以上3 种加料顺序分别测试上清液的浊度,结果列于表2。
表2 上清液测试结果
加料顺序 | 进水浊度/NTU | 上清液浊度/NTU | 去除率/% |
1 | 303.40 | 2.87 | 99.1 |
2 | 310.60 | 3.24 | 99.0 |
3 | 306.3. | 45.5 | 85.1 |
从以上数据中可以看出,前两种加料顺序的效果基本相同,第3 种显然不可取。究其原因,应该是磁粉加入太晚,赶不上参加混凝反应,未能形成磁性絮团。
4. 2. 2搅拌条件对系统运行的影响
保持其他参数不变,分别调节3 个混合池中搅拌机的运行频率,记录下各种组合下叶轮的转数和相应的污水水质指标,得出如下结论:在1 级混合池和2 级混合池需要快速搅拌,以增加混凝剂、磁粉与污物的碰撞机会,但是,搅拌速度并非越快越好,当搅拌速度达到500 r/min 时,与250 r/min 的效果相差不大,因此,在1 级和2 级混合池宜采用250 r/min 的搅拌速度。在3 级混合池,宜采用较慢的搅拌速度,以免将生成的矾花打碎。该工艺条件下推荐80 r/min 的搅拌速度。
4. 2. 3混凝剂投加量对系统运行的影响
保持其他参数不变,将MMS-M 投加质量浓度恒定,调节MMS-A的投加量(以Al2O3计),分别测试各种加药量下的COD、总磷及浊度指标,并计算出各项污染物的去除率,将试验结果绘于图3 中。
从图3 中可以看出,系统对COD 的去除率保持在75 %以上,当加药量在25~30 mg/L 之间时,COD 的去除率在85 %左右,随着MMS-A投加质量浓度的提高,COD 去除率没有明显提高。